Que	Question		Answer	Mark	Guidance
1	(a)		 M1 Trend AND nuclear charge mark (from Li to F) atomic radius decreases AND nuclear charge increases or number of protons increases√ 	3	ALLOW ORA throughout if it is clear that the Period is being crossed right to left ALLOW 'proton number increases' IGNORE 'atomic number increases' IGNORE 'nucleus gets bigger' IGNORE 'nucleus gets bigger' IGNORE 'effective nuclear charge increases' DO NOT ALLOW 'charge increases' without reference to nuclear'
			M2 same shell/shielding mark (outer) electrons are in same shell OR (outer) electrons experience similar or same shielding ✓ OR same number of shells		IGNORE there is shielding DO NOT ALLOW sub-shells OR orbitals DO NOT ALLOW 'electrons are at a similar distance' This will also contradict M1 ALLOW 'there is no change in shielding' IGNORE 'shielding has no effect' DO NOT ALLOW 'there is no shielding'
			M3 <i>nuclear attraction mark</i> Greater nuclear attraction on (outer) electrons or shells OR (Outer) electrons or shells are attracted more strongly to the nucleus ✓		Quality of written communication 'nucleus' OR 'nuclear' spelled correctly once and used in context for third marking point ALLOW pull for attraction IGNORE for M3, 'electrons are pulled closer to nucleus' as this is a re-statement of the trend mark. DO NOT ALLOW 'greater nuclear charge' for 'greater nuclear attraction' for M3

Question		Answer	Mark	Guidance	
(b)	(i)	(1s²) 2s² 2p ⁶ 3s² 3p ⁶ 3d ¹⁰ 4s² 4p ⁶ ✓	1	ALLOW 4s ² 3d ¹⁰ 4p ⁶ ALLOW subscripts AND 3D IGNORE 1s ² seen twice	
(b)	(ii)	Cream AND precipitate ✓	1	ALLOW solid OR ppt for precipitate IGNORE 'does not dissolve' OR 'partially dissolves'	
(b)	(iii)	$Ag^{+}(aq) + Br^{-}(aq) \rightarrow AgBr(s) \checkmark$	1	Equation AND state symbols required	
(c)	(i)	Equation 2NaOH + Cl ₂ → NaCl + NaClO + H ₂ O ✓ Conditions cold AND dilute (sodium hydroxide) ✓	2	ALLOW correct multiples IGNORE state symbols ALLOW room temperature OR ≤ 20 ^o C for cold	

uestion	Answer		Guidance
(c) (ii)	Definition of disproportionation mark M1 (Disproportionation) is the (simultaneous) oxidation and reduction of the same element (in the same redox reaction) ✓ M2 Assigning of oxidation numbers Cl in Cl ₂ is 0 AND Cl in NaCl is -1 AND Cl in NaClO ₃ is +5 ✓ M3 Chlorine has been oxidised from 0 to +5 AND Chlorine has been reduced from 0 to -1 ✓ 'Chlorine has been oxidised from 0 in Cl ₂ to +5 in NaClO ₃ and chlorine has been reduced from 0 in Cl ₂ to +5 in NaClO ₃ and chlorine has been reduced from 0 in Cl ₂ to -1 in NaCl' would secure M2 and M3 $3Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 3H_2O$ $\int_{-1}^{-1} \int_{-1}^{-1} \int_{-1}^{+5} \int_{-1}^{-1} \int_{-1}^{-1} \int_{-1}^{+5} \int_{-1}^{-1} \int_{-1}^{-1} \int_{-1}^{-1} \int_{-1}^{+5} \int_{-1}^{-1} \int_$	Mark 3	 ALLOW 'an element' OR 'a species' for 'the same element' Assume 'it' means disproportionation M1 can be awarded for 'chlorine is oxidised and reduced and this is disproportionation' ALLOW oxidation numbers written above the equation if not seen in the text but IGNORE oxidation numbers written above the equation if seen in the text ALLOW 1– AND 5 AND 5+ DO NOT ALLOW chloride in place of chlorine except for NaCl DO NOT ALLOW Cl⁻ in NaCl AND Cl⁵⁺ in NaClO₃ (ie do not allow ionic charges for oxidation numbers) ALLOW Cl OR Cl₂ for chlorine DO NOT ALLOW M2 if incorrect oxidation numbers of other elements are seen in the text eg H = +2 ALLOW ECF for third marks if ONE incorrect oxidation number is assigned but directional changes are correct eg Cl = 0 and -1 and +3 instead 0 and -1 and +5 DO NOT ALLOW ECF if two oxidation numbers are incorrectly assigned IGNORE references to electron loss/gain If oxidation numbers are correct ALLOW third mark for: chlorine is oxidised to form NaClO₃ AND chlorine is reduced to form NaCl
	Total	11	

PhysicsAndMathsTutor.com

Qu	Question		Answer		Guidance
2	(a)	(i)	$CaCO_3(s) \rightarrow CaO(s) + CO_2(g) \checkmark$	1	
	(a)	(ii)	BaCO₃ OR RaCO₃ ✓	1	ALLOW formula if seen as reactant in an equation IGNORE name
	(b)		FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = $SrCl_2 \cdot 2H_2O$ award 3 marks M1 Correctly calculates Mol of $SrCl_2 \cdot 6H_2O = (5.332 / 266.6) = 0.02 \text{ mol }\checkmark$ M2 Correctly calculates Mol of water given off [(5.332 – 3.892)/18] = 0.08 mol \checkmark M3 Correctly calculates 0.08/0.02 = 4 mol of water lost from one mol of $SrCl_2 \cdot 6H_2O$ Therefore Answer = $SrCl_2 \cdot 2H_2O \checkmark$	3	Allow alternative methods eg M1 Correctly calculates mol of $SrCl_2 \cdot 6H_2O$ as $5.332/266.6 = 0.02(00)$ mol DO NOT ALLOW M1 if a second mass is divided by 266.6 M2 Correctly calculates molar mass of partially hydrated product as $3.892/0.02(00) =$ 194.6 M3 Correctly calculates mass of H ₂ O present as 194.6 – 158.6 = 36.0 AND product is $SrCl_2 \cdot 2H_2O$ ALLOW ECF for the third mark for showing 158.6 taken from an incorrect stated molar mass leading to an ECF formula OR ALLOW 266.6 – 194.6 = 72.0 to find amount of water lost
	(c)	(i)	Reaction 1: Ba + $2H_2O \rightarrow Ba(OH)_2 + H_2 \checkmark$ Reaction 2: Ba ₃ N ₂ + $6H_2O \rightarrow 3Ba(OH)_2 + 2NH_3$ Correct products \checkmark Balancing \checkmark	3	Ignore state symbols
	(c)	(ii)	Giant ionic (lattice) ✓	1	ALLOW 'Giant lattice with ionic bonds' ALLOW 'Giant ionic bonds' DO NOT ALLOW 'atoms or molecules or dipoles'

Q	uestion	Answer	Marks	Guidance
3	(a)	Reactivity increases (down the group) ✓	5	FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etcMUST BE USED'Down the group' is not requiredORA throughoutALLOW alternative phrases for 'reactivity increases'
		Increasing size mark Atomic radius increases OR There are more shells ✓ Increased shielding mark		ALLOW 'there are more energy levels' ALLOW 'electrons are in higher energy levels' ALLOW 'electrons are further from the nucleus' IGNORE there are more orbitals OR more sub-shells ALLOW 'different shell' OR 'new shell'
		There is more shielding ✓		There must be clear comparison ie 'more shielding' OR 'increased shielding' ALLOW there is more electron repulsion from inner shells DO NOT ALLOW responses which have no comparative eg 'there is shielding'
		Nuclear attraction (to electron) mark Nuclear attraction (to electron) decreases OR (outermost) electrons experience less attraction (to nucleus)		ALLOW 'there is less nuclear pull' OR 'electrons less tightly held' IGNORE there is less effective nuclear charge IGNORE 'nuclear charge' for 'nuclear attraction'
		OR Increased nuclear charge is outweighed by increased shielding/distance ✓		If question is answered in terms of only Group 7, then ONLY marks 2, 3 and 4 can be awarded
		Ease of electron loss mark Easier to remove (outer) electron(s) OR Ionisation energy decreases ✓		ALLOW easier to oxidise
		Quality of written communication electron(s) OR ionisation OR ionization OR oxidise OR oxidize spelled correctly at least once for last marking point		

Q	Question		Answer	Marks	Guidance
	(b)	b) (i) AgNO ₃ (aq) OR silver nitrate OR AgNO ₃ \checkmark		1	ALLOW Ag ⁺ (aq)
		(ii)	Yellow AND precipitate ✓	1	ALLOW shades of yellow but not creamy yellow ALLOW ppt or solid for precipitate
		(iii)	Ag⁺ (aq) + I⁻(aq) ➔ AgI(s) ✓	1	ALLOW correct multiples
		(iv)	concentrated (aqueous) NH ₃ ✓	1	
			Total	9	

Q	uesti	on	Answer	Marks	Guidance
4	4 (a) (i)			3	FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED
			Nuclear charge mark		
			(Across the period) number of protons increases OR		Comparison should be used for each mark
			greater nuclear charge ✓		IGNORE atomic number increases, but ALLOW proton number increases
			Quality of written communication – nuclear OR		IGNORE nucleus gets bigger
			proton(s) OR nucleus spelled correctly ONCE for the first		IGNORE 'effective nuclear charge increases'
			marking point		DO NOT ALLOW 'charge' increases without reference to nuclear
			Distance / shielding mark		
			(Outermost) electrons are in the same shell OR		
			(Outermost) electrons experience the same shielding		
			OR		ALLOW shielding is similar BUT IGNORE 'there is shielding'
			Atomic radius decreases ✓		DO NOT ALLOW sub-shells OR orbitals
			Nuclear attraction (to electron) mark		
			Greater nuclear attraction (on outermost electrons)		
			OR		ALLOW greater nuclear pull for greater nuclear attraction
			(outer) electrons are attracted more strongly (to the		DO NOT ALLOW use of greater nuclear charge for greater
			nucleus) ✓		nuclear attraction for third mark
		(ii)	(Diamond and graphite form) gaseous atoms (of carbon when they are ionised) \checkmark	1	ALLOW the atoms are in the gaseous state

Question		Ans	swer		Marks	Guidance
(b)	Structure	Lithium Giant	Carbon (diamond) Giant ✓	Fluorine Simple	6	ALLOW shared pair of electrons for covalent (bond) ALLOW vdw for van der Waals' ALLOW temporary-induced or instantaneous-induced for
	Force or bond overcome on melting	Metallic bond	Covalent (bond) ✓	van der Waals' (forces) OR induced dipoles ✓		van der Waals' ALLOW Positive ions for Li ⁺ ions IGNORE 'Lithium ions' but ALLOW 'Positive lithium ions' DO NOT ALLOW Li ²⁺
	Particles between which the force or bond is acting	Li⁺ ions and (delocalised) electrons ✓	Atoms ✓	Molecules ✓		IGNORE C and IGNORE F ₂ IGNORE diagrams but ALLOW names of particles if seen as a label on a diagram DO NOT ALLOW implication that covalent bonds are broken in fluoring for the particles mark of fluoring on this implies the
				Total	10	in fluorine for the <i>particles</i> mark of fluorine as this implies the particles are atoms

G	uestion	Answer	Marks	Guidance	
5	(a)	Periodicity ✓	1	ALLOW phonetic versions	
	(b)	 Al bonding mark Al has metallic (bonding) OR has (electrostatic) attraction between positive ions and (delocalised) electrons ✓ Si bonding mark Si has covalent (bonding) OR has shared pairs of electrons between atoms ✓ P bonding mark P has induced dipoles OR has van der Waals' forces (between molecules) ✓ Structure mark 1 Al AND Si are Giant ✓ Structure mark 2 P is Simple molecular OR simple covalent ✓	6	Use annotations with ticks, crosses, ECF etc for this part DO NOT ALLOW marking point 1 if Al has dipoles OR intermolecular forces OR molecules OR atoms OR attraction between nuclei and electrons OR attraction between oppositely charged ions DO NOT ALLOW marking point 2 if Si has dipoles OR intermolecular forces OR molecules but IGNORE 'molecule' Must be induced dipoles ALLOW vdW for van der Waals' IGNORE P has covalent bonds for marking point 3 Quality of Written Communication: 'giant' spelled correctly once and used in context for the fourth marking point	
		 Bond strength mark Metallic AND covalent are stronger than vdWs OR Bonds broken in Al AND in Si are stronger than the forces broken in P OR More energy is needed to overcome bonds in Al AND Si than the forces in P ✓ 		DO NOT ALLOW covalent bonds are broken in phosphorus for marking point 6, but ALLOW answers that inform AI and Si are stronger than P, ignoring incorrect forces or bonds used above IGNORE 'heat' but ALLOW 'heat energy'	

Question	Answer	Marks	Guidance
(c) (i)	Increasing straight line OR curve from Na to Ar ✓	1	ALLOW bar charts OR points IGNORE the standard of drawing as long as the trend is clear IGNORE decrease between Mg/AI and P/S Essentially the mark is for Na < Mg < Si < P < CI < Ar AND AI < Si AND S< CI
(ii)	Decreasing straight line OR curve from Na to Ar \checkmark atomic radius 1 M_{g} Al Si P S Cl Ar	1	ALLOW bar charts OR points IGNORE the standard of drawing as long as the trend is clear IGNORE Ar Essentially the mark is for Na > Mg > AI > Si > P > S > CI
	Tota	I 9	

Question	Answer	Marks	Guidance
6 (a)	$(1s^2) 2s^2 2p^6 3s^2 \checkmark$	1	IGNORE 1s ² seen twice ALLOW subscripts
(b) (i	 Mg⁺(g) → Mg²⁺(g) + e⁻ Equation correct ✓ State symbols correct ✓ 	2	ALLOW $Mg^+(g) - e^- \rightarrow Mg^{2+}(g)$ for 2 marks The second mark is dependent upon the first mark except for the following close attempts for the first mark: ALLOW the following for one mark as states are correct $Mg(g) \rightarrow Mg^{2+}(g) + 2e^-$ $Mg(g) + e^- \rightarrow Mg^{2+}(g) + 2e^-$ ALLOW e for electron IGNORE states on electron
(i	 i) Ionic radius mark Mg⁽⁺⁾ has smaller (ionic) radius OR has less shells ✓ Shielding mark (outermost electron) of Mg⁽⁺⁾ experience less shielding ✓ Nuclear attraction mark More nuclear attraction on (outermost electrons) OR Outer electrons are attracted more strongly (to the nucleus) ✓ ORA throughout 	3	Use annotations with ticks, crosses, ECF etc for this part ALLOW Mg ⁽⁺⁾ has less energy levels ALLOW Mg ⁽⁺⁾ has electrons in lower energy level ALLOW Mg ⁽⁺⁾ has electrons closer to nucleus IGNORE Mg ⁽⁺⁾ has less orbitals OR less sub-shells IGNORE atomic for ionic IGNORE 'different shell' ALLOW screening for shielding ALLOW Mg ⁽⁺⁾ has less electron repulsion from inner shells Quality of Written Communication: 'nuclear' OR 'nucleus' OR 'electron(s)' spelled correctly once and used in context for the third marking point ALLOW Mg ⁽⁺⁾ has more nuclear pull IGNORE Mg ⁽⁺⁾ has more effective nuclear charge DO NOT ALLOW more nuclear charge for more nuclear attraction for the third mark

Que	stion	Answer	Marks	Guidance
((;) (i)	Sr ²⁺ ✓ OH [−] ✓	2	ALLOW 2OH ⁻ ALLOW 2 marks for Sr(OH) ₂ \rightarrow Sr ²⁺ + 2OH ⁻ ALLOW 1 mark for Sr ²⁺ + 2OH ⁻ \rightarrow Sr(OH) ₂ IGNORE H ⁺
	(ii)	Sr has lost (two) electron s ✓	1	ALLOW Sr \rightarrow Sr ²⁺ + 2e ⁻ IGNORE references to oxidation numbers
	(iii)	SrO AND H₂O ✓	1	ALLOW acceptable alternatives from Sr salts and alkalis eg SrC <i>I</i> ₂ + NaOH
((l) (i)	It shows the oxidation number of the sulfur OR the name without the IV is ambiguous ✓	1	DO NOT ALLOW 'the charge on sulfur' DO NOT ALLOW 'shows the oxidation number of the sulfate' ALLOW Otherwise it could be SrSO ₄ ALLOW Sulfur has different oxidation numbers AW
	(ii)	H ₂ SO ₃ ✓	1	
		Total	12	